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1 Overview

• Measurement uncertainty is typically described in terms of “random errors” (often
referred to as “precision”) and “systematic errors” (also referred to as “accuracy”).

• Although this approach is good enough for many analyses, it has limitations.

• In particular, it is less useful when considering quantities such as long term trends
that are derived from statistics of manymeasurements.

• Here we discuss these limitations, consider an example, and point towards a solution.

• We suggest that the sources of uncertainty that come into play in such cases be
collectively known as “interaction bias” (although the informal name of “headache
errors” has also been suggested andmay be the one that sticks).

2 High level view of the issue

What is the current practice?
• The typical approach taken when reporting uncertainty in
atmospheric measurements (as with many other measure-
ments) is to divide the di�erent uncertainty components into
two categories:

Random errors,often synonymous with “precision”. Typically
the largest contributor to these is the noise on the raw radi-
ance measurements made by the instrument.

Systematic errors,often synonymous with “accuracy”. Exam-
ples of these include errors in instrument calibration or un-
certainties in spectroscopy.

What are its limitations?
• This approach, while useful in many circumstances, risks over-

simplifying the situation, particularly when considering quan-
tities derived from multiple related observations.

• For example, consider the study of decadal trends in strato-
spheric ozone from a spaceborne instrument such as the Aura
Microwave Limb Sounder (MLS).

–Given a few thousand individual measurements per day glob-
ally, any purely random instrumental error terms will be re-
duced by a signi�cant 1/√n factor when considering long-
term trends.

–Further, any systematic errors that manifest purely as con-
stant “biases” will cancel out in a trend calculation.

–A framework that reported uncertainty solely in those terms
would accordingly lead users to conclude that decadal
trends estimated from the observations are virtually error
free.

– Such an assessment is clearly unhelpful and represents overly
optimistic guidance to users.

• Similar issues arise when computing spatial gradients, sea-
sonal cycles, etc. based on many individual observations.

What is really going on?
• The reality in most situations is a far more complex set of un-

certainties that don’t readily fall into such characterization.

–Even if radiance noise is uncorrelated, its impacts on re-
trieved states are not.

–The impact of an error may be a function of atmospheric
state (e.g., stronger when temperature is greater).

– In situ measurements face comparable issues, e.g., biases
in temperature sensors on radiosondes give errors that are
correlated vertically but typically not temporally or spatially
(batch-to-batch issues aside).

What can we do about it?
• Most data providers have computed the sensitivity of their

measurements to systematic errors (e.g., uncertainty in spec-
troscopy) through perturbation studies or similar calculations.

• It is possible to take this a step further and quantify the depen-
dence of the impacts of these errors on the atmospheric state
and/or other parameters.

• With this knowledge, the potential impact of such errors on
quantities such as trends and spatial gradients can, in principle,
be estimated.

• A dilemma is how to communicate this complexity to users
when needed, without putting them o� using the data by pre-
senting them with an uncertainty reporting framework that is
unnecessarily complicated for many applications.

3 An Aura Microwave Limb Sounder (MLS)-based example

MLS background
• MLS, like many similar instruments, measures atmospheric spectra and

uses these to deduce temperature and composition pro�les.

• The spectral lines are temperature and pressure dependent, and many
lines from various atmospheric species overlap with each other.

• Accordingly, the MLS products are all intertwined and systematic errors
a�ect them in coupled ways.

An example of such an error
• For example, an error in ozone spectroscopy will a�ect not only ozone, but

also any other product with nearby spectral lines.

• In all cases, the magnitude of the error introduced will be a function of
how much ozone is present in the atmosphere.

Figure 1: MLS 146 hPa (∼10 km) CO
retrieved with perturbed O3 spec-
troscopy (y-axis), vs. that retrieved
with the correct spectroscopy (x-axis)
for a simulated day’s worth of data.
Black line is a linear �t, thin grey line
is the 1:1 line.
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• Figure 1 shows ozone spectroscopy error impacts on MLS 146 hPa CO.

• As would be expected, the perturbations from this error are largest at
higher latitudes, where ozone abundances are larger with greater variabil-
ity (and CO abundances are smaller).

• No simple statement of bias or random error can properly describe this
error.

An example where this matters
• An MLS data user contacted us concerning di�erences between the MLS

and IASI estimates of ∼150 hPa CO in the Asian Monsoon region.

Figure 2: Left: MLS JJA 2008 average 146 hPa CO. Right: IASI JJA 2008 average 150 hPa
CO. (Figures courtesy of Laura Pan.)

• One concern was the clear di�erence in morphology between the two
datasets (note the di�erences in color scale).

• Unsurprisingly, perhaps, the main cause of this discrepancy appears to be
related to the limited vertical resolution of IASI.

– For example, the enhanced IASI CO in the western Paci�c probably re-
�ects an enhancement at lower altitudes.

• However, the enquiry did lead to some investigation related to the robust-
ness of features seen in the MLS map.

• Let us examine how morphology in ozone can, through a potential error
in ozone spectroscopy, lead to a spatially-dependent bias in CO.
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Figure 3: Left: Ozone spectroscopy-induced perturbation in 146 hPa CO (as in
Figure 1) shown versus 146 hPa O3. Right upper: JJA 2008 MLS CO at 146 hPa. Right
lower: JJA 2008 MLS O3 at 146 hPa. Selected regions on the maps are highlighted
with yellow/black boxes.

• The left-hand plot in Figure 3 shows how the CO error induced by per-
turbed ozone spectroscopy relates to the ozone abundance (taken from
the same simulations discussed previously).

• A simple linear �t (e�ectively parameterizing Hi in the discussion below)
can be used to estimate the potential impact of ozone spectroscopy error
on 146 hPa MLS JJA-average CO (maps in Figure 3).

• How much might CO gradients (e.g., box-to-box di�erences) be impacted
by ozone spectroscopy error?

– The A/B di�erence reduces from 18.8 to 17.6 ppbv CO, a ∼6% change.
– The A/C di�erence reduces from 61.3 to 55.5 ppbv CO, a ∼10% change.

4 Formalizing the situation mathematically

Errors on individual measurements
The typical formalism for describing satellite retrievals is set up as follows:

• We de�ne a “state vector”, x, which describes the atmospheric information
we’re seeking to estimate, such as ozone pro�les, temperature, etc.

• We seek an estimate of x (typically referred to as x̂) based on a collection
of radiance observations contained in the “measurement vector” y.

• Given a perturbation in some parameter (e.g., spectroscopy), ∆b, the im-
pact on the retrieved state is given by

∆x̂ =
∂x̂
∂y

∂y
∂b
∆b = GKb∆b = H∆b (1)

(assuming linearity over ∆b), where

G = ∂x̂/∂y, the “retrieval gain matrix”,
Kb = ∂y/∂b, the “forward model parameter sensitivity matrix”, and
H = GKb, the product of the two terms above, de�ned to simplify the
algebra that follows.

• The issue we’re focused on originates from the dependence of H on x.

– Which derives from the dependence of Kb and K (= ∂y/∂x) on x in most
cases.

– As the K term appears dictates G, the latter also typically depends on x.

• This means that ∆x is not constant for all states, even though ∆b likely is.

Quantities derived frommultiple measurements
• Now consider some new (vector or scalar) quantity z, that is formed from

an ensemble of N atmospheric states x1 . . . xN.

– z could be, for example, a long-term trend or a di�erence in the averages
between two regions (e.g., inside and outside the polar vortex).

–We’ll consider linear operations for now (sums, di�erences, averages,
trends etc.), though more general representations are feasible.

• Let z thus be formed by:

z = [W1 W2 ⋯ WN]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮
xN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where the twofold roles of the (nz × nz)Wi matrices are to:

1. Select/combine elements of interest from each xi (e.g., compute the
ozone column between 100 hPa and 10 hPa for each pro�le), and

2. modulate each xi contribution to z to give the desired metric (e.g.,
Wi ∼ 1/N to give a regional average, or 1/Nnorth for northern hemisphere
and −1/Nsouth for southern hemisphere to give a NH/SH di�erence, etc.).

Errors in such quantities
• Asumming that individual retrievals are linear in ∆b then the ∆b-induced

error in ẑ is given by:

∆z = [W1 W2 ⋯ WN]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1
H2
⋮
HN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆b. (3)

• The expectation of this term is given by:

E (∆z) = ∑
i

WiHi E (∆b) . (4)

• If we assume that our spectroscopy etc. is the “best” choice, then E (∆b) = 0,
thus E (∆z) = 0.

• The covariance of ∆z is given by:

cov (∆z) = ∑
i

∑
j

WiHi cov (b)HT
jW

T
j . (5)

• This equation makes it clear why such errors are very challenging to handle.

• Firstly, there is the problem of communication.

– Only the user knows they want in z, and thus what each Wi is.
– Whereas, only the instrument teams are in a position to provide the Hi

matrices for each pro�le, and cov(b), needed to compute the inner term.

• Secondly, these are complex and time-consuming calculations.

– Full computation of every Hi for each pro�le and considering all possible
error sources would be a very costly process.

– The calculation in Equation 5, which users would need to perform, isn’t
exactly trivial either.

• In principal, the data providers could produce an Hi matrix for each re-
trieved state, along with the cov(b) matrix.

• Some of parameterization of H as a function of x may be more viable.

• Such approaches are under investigation for MLS.
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